Category: Foresight, market studies and market roadmaps

HARMONITOR project

HARMONITOR project

This project ends on: 31/05/2025

Harmonisation and monitoring platform for certification schemes and labels to advance the sustainability ofbio-based systems

The HARMONITOR project will improve the effectiveness of sustainability certification schemes and labels (CSLs) in various sectors of the EU bioeconomy and strengthen their possible use as a co-regulation instrument within the EU Bioeconomy policy framework. The project will also establish and test a participative review platform concept to help CSLs to find commonalities and cooperation when operating in bio-based value chains within and across EU borders. The goal of this platform is to promote continuous improvement of CSLs and continuous knowledge of these dynamic developments by market actors.

Contacts:

Sergio Ugarte: s.ugarte@sqconsult.com
Costanza Rossi: c.rossi@sqconsult.com
Monique Voogt: M.Voogt@sqconsult.com

website: https://www.harmonitor.eu

ShapingBio project

ShapingBio project

This project ends on: 31/08/2025

Shaping the future bioeconomy across sectoral, governmental and geographical levels

Funded under Horizon Europe, ShapingBio will strengthen and deploy innovation in bio-based sectors, including food systems, across Europe – by ensuring an inclusive and sustainable growth at local level. ShapingBio provides recommendations for measures and good practice how to strengthen this innovation ecosystem, how to overcome hurdles and how to improve its efficiency, its sustainability and resilience. The project therefore will also contribute significantly to a number of EU level initiatives and strategies, such as the bioeconomy strategy and Action Plan, the Farm to Fork strategy, the EU Green Deal policy priorities and the EU’s Climate ambition for 2030 and 2050.

Contacts:

Dr. Sven Wydra: Sven.wydra@isi.fraunhofer.de

website: https://www.shapingbio.eu

BioReCer project

BioReCer project

This project ends on: 31/08/2025

Biological Resources Certifications Schemes

BIORECER aims at assessing and complementing current certification and labelling schemes for biological feedstock according to the new sustainability EU goals. These objectives include new criteria for sustainability, origin, tracking and traceability, in order to ensure best possible environmental performance and applicability at EU and global scale.

Contacts:

Pedro Villanueva Rey: Pedro.villanueva@cetaqua.com

website: https://biorecer.eu/

SUSTRACK project

SUSTRACK project

This project ends on: 31/10/2025

Supporting the identification of policy priorities and recommendations for designing a sustainable track towards circular bio-based systems

The transition from linear fossil-based systems to circular and bio-based systems represents an opportunity and a suitable pathway for achieving several SDGs. Indeed, circular bio-based systems depict a great opportunity to reconcile sustainable long-term growth with environmental protection through the prudent use of renewable resources for industrial purposes.

This needed transition is a complex process, which does not simply require innovative technologies from the supply-side, but also societal transformations based on a multi-actor process.

The circular bioeconomy meta-sector may be a good candidate to put forward a new economic model, which requires transformative policies, purposeful innovation, access to finance, risk-taking capacity as well as new and sustainable business models and markets.

However, a critical assessment of the environmental, social and economic impacts of the current linear fossil-based economy, as well as of the improvement potential associated with circular bio-based systems, is needed to underpin the identification of policy priorities.

Bearing this in mind, SUSTRACK is a three-year project aimed at supporting policymakers in their efforts to develop sustainable pathways to replace fossil and carbon-intensive systems with sustainable circular and bio-based systems (at the EU and regional scale), contributing to achieving the European Green Deal’s objectives.

This will be done by:

  • identifying environmental, economic and social limits of a linear carbon-intensive and fossil-based economy;
  • improving existing assessment methodologies;
  • assessing the environmental, social and economic impacts of the EU’s current linear fossil-based economy;
  • comparing multiple transition scenarios focusing on the most carbon-intensive sectors;
  • identifying priorities according to scenarios analysed in the project and develop guidelines and policy recommendations.

Contacts:

Piergiuseppe Morone (Coordinator): piergiuseppe.morone@unitelmasapienza.it

Gülşah Yilan (Project manager): gulsah.yilan@unitelmasapienza.it

website: https://sustrack.eu/

Bio4Africa project

Bio4Africa project

This project ends on: 30/05/2025

Diversifying revenue in rural Africa through circular, sustainable and replicable bio-based solutions and business models

Africa will need to feed over 2 billion people by 2050 while coping with unprecedented demographic, socio-economic, environmental, climatic and health transitions. Meanwhile, undernourishment is still on the rise, affecting almost 20% of its population now. Under this light, ensuring Africa’s food security becomes imperative, with the bioeconomy posed to play a leading role to this end. It is against this backdrop that BIO4AFRICA sets off to support the deployment of the bioeconomy in rural Africa via the development of bio-based solutions and value chains with a circular approach to drive the cascading use of local resources and diversify the income of farmers. Our focus is on transferring simple, small-scale and robust bio-based technologies adapted to local biomass, needs and contexts (green biorefinery, pyrolysis, hydrothermal carbonisation, briquetting, pelletising, bio-composites and bioplastics production). In doing so we aim at empowering farmers to sustainably produce a variety of higher value bio-based products and energy (animal feed, fertiliser, pollutant absorbents, construction materials, packaging, solid fuel for cooking and catalysts for biogas production), significantly improving the environmental, economic and social performance of their forage agri-food systems. To this end, we have set up 4 pilot cases with over 8 testing sites in Uganda, Ghana, Senegal and Ivory Coast, offering more than 300 farmers and farmer groups of all sizes (incl. small dairy and lower-income farmers, women farmer groups and transhumant pastoralists among others) the opportunity to test them in real productive conditions. Along the way, our balanced mix of 13 African and 12 EU partners will engage in solid multi-actor collaboration with rural communities and government, co-developing novel sustainable value chains driven by circular business models and supporting deployment in other areas, all while safeguarding agronomic, environmental, social and economic sustainability.

Contacts:

Knud Tybirk: kt@foodbiocluster.dk

website: https://www.bio4africa.eu/

BeonNAT project

BeonNAT project

This project ends on: 30/06/2025

Innovative value chains from tree & shrub species grown in marginal lands as a source of biomass for bio-based industries

BeonNAT project proposes to use marginal lands in Europe (estimated 4.3 M km2 and 0.4M km2 of agricultural and forest marginal in EU-28, respectively) to obtain forest biomass for the production of 8 products based on new biobased value chains: essential oils, extracts, wood paper, particleboard, bioplastics, biochar, active carbon and absorbents. This way, BeonNAT will allow for the production of biodegradable bio-based products and bioactive compounds that will play an important role to replace fossil-based competing substitute products.

Contacts:

Luis Esteban (Coordinator): luis.esteban@ciemat.es

Iciar Serrano (Communication): iciar.serrano@contactica.es

website: https://beonnat.eu/

SusFeed project

SusFeed project

This project ends on: 31/12/2025

Sustainable feed production from Norwegian bio-resources for livestock and aquaculture

In recent years, considerable attention has been given to identifying sustainable and cost-effective animal feed materials to address issues such as food security, GhG emissions, climate change, and, in Norway, ambitious targets to increase salmon production. This search for novel feed ingredients and sources is creating new opportunities for companies working with bioresources. One option is the use of new feed technologies that promise to enhance food security, lower GhG emissions, promote sustainability and create new industries for food production in Norway. This is likely to dramatically transform the existing feed system. While there has been a focus on developing new feeds, we have very limited knowledge on the overall feed system and how it is changing – knowledge that is critical for meeting the future needs of the agri- and aquaculture sectors.

How sustainable will the feed system be and how can we sustainably source feed in the volumes required? The aim of SusFeed is to develop an in-depth understanding of the feed system: how feed can be harvested, produced, processed and distributed to supply the growing and changing needs of Norway’s agri- and aquacultural sectors. For this, we will apply a systems approach to mapping the domestic feed system and, using a systems model, conduct environmental, social and economic sustainability assessments. SusFeeds multi-disciplinary team involves researchers from the social sciences, biology, agronomy, nutrition and technology, working closely with 18 business partners, stakeholders and other interest groups involved in the feed value chain. Our primary output will be a model of the Norwegian feed supply system that maps potential domestic feed ingredients, their potential for industrial up-scaling and sustainability. This will provide the basis for the establishment of a future feed supply system that operates across sectors and incorporates potentially disruptive technologies and innovation the coming decades.

Contact:

Egil Petter Stræte
email: egil.petter.strate@ruralis.no

website: https://ruralis.no/en/projects/susfeed-baerekraftig-norsk-forproduksjon/

 BL2F project

 BL2F project

Project concluded

Black Liquor to Fuel

Aviation and shipping sectors are two areas of transport that are expected to grow at an incredibly fast rate, and so will their greenhouse gas emissions.

To tackle this challenge the BL2F project (Black Liquor to Fuel) will create a new, clean fuel to be used as an alternative to current fossil fuels.

BL2F is a Horizon 2020 project that will take the waste-stream of the pulp-and-paper industry, called Black Liquor, and create an end-to-end chain to produce a biofuel ready to be used in plane and ship engines. The process begins at the pulp mill, where Black Liquor will be converted into a biofuel intermediate using a novel integrated Hydrothermal Liquefaction (IHTL) concept. The biofuel intermediate will then be refined and upgraded to produce aviation and marine fuel. All the production steps in BL2F, will be optimised to make the process economically and technically feasible.

Led by Tampere University, the consortium consists of a mix of 12 partners which all bring in different resources and expertise to help ensure the project’s success. Employing the BL2F process can reduce waste, cost, greenhouse gas emissions, and contribute to a circular economy. Large-scale use of the processes and fuel developed by the project can be an important asset in the fight against climate change

Contact:

Prof. of Practice Tero Joronen
email: hello@bl2f.eu

website: https://www.bl2f.eu/

 OLEAF4VALUE project

 OLEAF4VALUE project

Project concluded

Olive leaf multi-product cascade based biorefinery

From an under-used biomass in the primary sector to tailormade solutions for high added value international market applications. The goal of OLEAF4VALUE is to set up the basis of six smart value chains based on a newly developed 4.0 concept: Smart Dynamic Multi-Valorisation-Route Biorefinery (SAMBIO) for the cascade valorisation of the olive leaf biomass according to its initial composition (Biomass Suitability Index – BSI). OLEAF4VALUE will give a new life to olive leaves, solving the problem of its removal from the fields while obtaining high added value bioactive compounds with high-market potential.

Contact:

Andrea León
email: andrea.leon@innovarum.es

website: https://oleaf4value.eu/

INDEPENDENT project

INDEPENDENT project

This project ends on: 31/12/2027

INDEPENDENT Integrated Biorefinery Concept for Bioeconomy Driven Development

The interest in generating renewable fuels from algae, has gained attraction for quite long time and pursued by both public and private entities. Yet, the pressure of budget cuts, global economic crisis and fluctuating oil prices have pushed back the progress of algal research and development efforts. Meanwhile, Europe is moving towards a bioeconomy driven future along with renewable fuel standards and requirements triggered by algal research. This is no coincidence as algal biomass offers several advantages such as efficient photosynthesis and CO2 capture mechanisms, no direct competition with food crops, non-arable land requirements, recyclable nutrients and wastewater utilization. However, in order to achieve commercially applicable rates of return on algal biofuels, numerous economical feasibility models suggest there is a need to generate value-added products within an integrated biorefinery concept. This requires targeting not only algal lipids as biodiesel feedstock, but also other biomolecules having higher value per dry biomass weight with potential applications such as food additives, health supplements, and pharmaceuticals.

A growing interest in designing biorefineries using algae species to produce several bio-commodity products also includes means of exploring their favorable greenhouse gas, water and land-use sustainability metrics. In this respect, key inputs include utilizing recycled nitrogen and phosphorus resources, tapping into existing CO2 emissions, and uncompromised water supplies. In addition, options to exploit residual biomass for additional bioenergy and biofertilizer applications for soil amendments are also considered auspicious for a more competent biorefinery platform.

This project is designed to build on all of these well thought contemplations to construct an integrated algal biorefinery that produces a portfolio of products that can be adjusted to meet market demands as a gateway into large scale production. Project site is carefully selected on Boğaziçi University’s Saritepe Campus, located on the coast of Black Sea with readily access to seawater. Emboldening on the interdisciplinary nature of the team, a non-destructive breakwater system will be designed to generate a coastal site suitable for macroalgae cultivation at open sea. Microalgae cultivation will be supported by recycled nutrients and waste CO2. Novel marine macro- and microalgae species will be pursued for pharmaceutical, human food and animal feed applications in addition to traditional biofuel functions. Digested algal biomass will be made available to organic farming activities on campus. A wind turbine operated year round will supply renewable energy to all operations on site allowing carbon-negative production. In addition to a full scale environmental life cycle assessment (e-LCA), a social life cycle assessment (s-LCA) will be conducted to assess the social and sociological aspects of algal biorefinery and its products, their actual and potential positive as well as negative impacts on the communities involved.

This large scale study with more than 110 wet tons of algae production per harvest period will provide key scientific findings and novel engineering pipelines to manufacture high-throughput multi-products on an algal biorefinery platform. The end result is expected to be advanced knowledge and practice for economically feasible and environmentally sustainable algal biorefinery with improved production metrics. Project team is comprised experts from universities, research institutes, SMEs, and large enterprises.

Contact:

Asst. Prof. Dr. Berat Haznedaroglu

(Project Coordinator)

Bogazici University

email: berat.haznedaroglu@boun.edu.tr

website: https://independent.boun.edu.tr/en/