Category: Industrial roadmaps

UNLOCK project

UNLOCK project

This project ends on: 30/04/2025

Unlock: Unlocking a feather bioeconomy for keratin-based agricultural products

As Europe continues on its trajectory to a circular bio economy, much of the work in achieving this will lie in identifying and developing new or more efficient value chains from existing waste streams. One such waste stream is in the poultry sector, where more than 15 million tonnes of meat are produced annually. While much of the waste here is already valorised, the vast quantity of feathers produced are unexploited. Currently, only around 25% of feather waste is collected; what is gathered is frequently used for meal and fertiliser applications, which are seen as mid- to low-value applications, with low margins to match.

However, feathers are made up of nearly 90% keratin, a valuable protein that can provide a resource for biodegradable materials, including bioplastics, with applications in agriculture. The UNLOCK project seeks to demonstrate how to release the value inherent in this waste stream, by developing smart logistic strategies and efficient feather biorefineries based on steam and pressure hydrolysis -. Ultimately, this will help to establish a feather-based bioeconomy that can generate innovative bio-based functional materials for agricultural applications.

By overcoming many of the existing difficulties in collecting and processing feathers obtained from slaughterhouses, the UNLOCK project aims to position this waste chain from feathers as a source of raw material for keratin for use in agriculture. It will find applications in products such as forest and seed trays, nonwoven geotextiles, hydroponic foams and mulch films. The advantages of these materials include biodegradation aligned to the duration of crops, the capacity to add nitrogen back to soils and generating zero waste at end-of-life.

Contacts:

Sarah Montes, Project Coordinator: smontes@cidetec.es

Capucine Pineau, Communication and Dissemination Manager: c.pineau@greenovate-europe.eu

Founding source: Bio Based Industries Joint Undertaking (BBI JU) under the EU Horizon 2020 programme

Website

 

Preserve project

Preserve project

This project ends on: 31/12/2024

Preserve: High performance sustainable bio-based packaging with tailored end of life and upcycled secondary use

Bio-based plastics, made in whole or partially from renewable biological resources, are mostly used in packaging applications. Growing concerns around single-use packaging waste is putting pressure on companies to improve the sustainability of their packaging. In this context, the EU-funded PRESERVE project will boost the circular use of bio-based packaging. Specifically, it will work to enhance the performance of primary food packaging. It will leverage the compounding of enzymes in bioplastics to stimulate biodegradation. The entire process that is required to produce at least 10 packaging demonstrators will be upscaled. Project results will benefit Europe’s plastic packaging market by creating jobs and growth.

Contacts:

Aldo Ramirez Reyes – IRIS (Coordinator) aramirez@iris-eng.com
Mara Menella – Kneia (WP Leader Communication and Dissemination) mara@kneia.com
Christian Schulz – European Bioplastics (Dissemination Manager) schulz@european-bioplastics.org
Natalia Grzomba – Crowdhelix (Clustering Lead) natalia.grzomba@crowdhelix.com

Founding source: Horizon2020

 

URBIOFIN project

URBIOFIN project

This project ends on: 30/09/2022

URBIOFIN project: Demonstration of an integrated innovative biorefinery for the transformation of Municipal Solid Waste (MSW) into new BioBased products

Due to the rapid growth of population, municipal solid waste (MSW) has contributed significantly to the total amount of waste generated by our society. Today in Europe, each habitant generates, in average, 0.5 tonnes of MSW per year, increasing at an annual rate of 10%. Around 40-50% of it correspond to organic waste. This organic fraction mainly contains carbohydrates, proteins and lipids, which are all useful raw material that can be converted to valuable products. Its valorisation will help to solve environmental pollution but also contributes to the transition from a linear to a renewable circular economy. Digestion and composting have contributed to the reduction of the biodegradable fraction of MSW sent to landfill. The low economical value of compost and biogas is limiting the sustainable implementation of separate sourcing systems since increasing citizen environmental (waste) taxes is then needed to tackle important logistic costs. New biobased products can help to improve waste treatment environmental and socioeconomical sustainability.

The aim of URBIOFIN project is to demonstrate the techno-economic and environmental viability of the conversion at semi-industrial scale (10 T/d) of the organic fraction of MSW (OFMSW) into: Chemical building blocks (bioethanol, volatile fatty acids, biogas), biopolymers (polyhydroyalkanoate and biocomposites) or additives (microalgae hydrolisated for biofertilisers). By using the biorefinery concept applied to MSW (urban biorefinery), URBIOFIN will exploit the OFMSW as feedstock to produce different valuable marketable products for different markets: agriculture, cosmetics. URBIOFIN will offer a new feasible and more sustainable scenario alternative to the current treatment of the OFMSW.

Contacts: Project Coordinator Ms Caterina Coll, caterina@perseobiotech.com

Mr Manolis Tsantakis, mdt@etam.gr
Founding source: Bio Based Industries Joint Undertaking (BBI JU) under the EU Horizon 2020 programme

Website

Tech4Biowaste project

Tech4Biowaste project

This project ends on: 31/03/2023

Bio-waste is a key waste stream in Europe with a high potential for contributing to a more circular economy. The Tech4Biowaste project will pave the way for deployment of bio-waste technologies and technology configurations by setting-up a database providing a comprehensive technology overview (technology readiness level –TRL- 4 and higher) for the valorisation of bio-waste (food waste and garden waste) into value added applications including organic soil improvers, fertilisers, organic chemicals, fuels and energy.

The database content will be determined jointly with actors across the bio-waste value chain. Technology providers can showcase new and emerging technologies, even at lower TRL. Technology searchers can analyse and compare bio-waste valorisation technologies. Both categories of users can assess their commercialisation potential through the associated decision support tool.

The Tech4Biowaste database will be composed of unique features based on the latest IT technologies, including artificial intelligence, and use of Open Source software. In order to catalyse significant database usage and future growth, it directly builds on the BBEPP-led Pilots4U network and links with the NOVA-led (parallel-developed) Renewable Carbon Initiative. A hybrid model will be used to populate the database, combining inputs from the consortium’s publishers’ team, a community of volunteers, and automated scripts and tools („bots”).

Tech4Biowaste will mobilise stakeholders (incl. intended users and contributors) for direct involvement (Co-creation, Training, Testing Panel, and Advisory Board) e.g. in the design of the database, in the development of a continuation and expansion scenario and finally for the Business Plan targeting sustained growth and continuity of the open platform

Contacts:

Project Coordinator: John Vos, BTG Biomass Technology Group: vos@btgworld.com

Stakeholder Relations Manager: Stef Denayer, Bio Base Europe Pilot Plant: stef.denayer@bbeu.org

Communication & Dissemination Manager: Freya Sautner, nova-Institut: freya.sautner@nova-institut.de

 

Website

 

 RoadToBio project

 RoadToBio project

Project concluded

RoadToBio will deliver a roadmap that will specify the benefits for the chemical industry along the path towards a bioeconomy to meet the societal needs in 2030. The roadmap will contain the following two main components:

(1) An analysis of the most promising opportunities (sweet spots) for the chemical industry to increase its bio-based portfolio, as well as the technological and commercial barriers and the hurdles in regulations and acceptance by society, governing bodies and the industry itself.

(2) A strategy, action plan and engagement guide to overcome the existing and anticipated barriers and hurdles as mentioned above. Furthermore it will bring together different parts of chemical industry, society, and governing bodies, to start a dialogue and to create a platform where this action plan can unfold its full potential, in order to help meet the very ambitious targets of the BIC for 2030.

The approach is based on three pillars, which are

(a) analysis of status quo and potentials,
(b) forward looking activities,
(c) continuous feedback loops and interactions with stakeholders.

The results will be wrapped up and phrased as a roadmap and an engagement guide describing the benefits and a way forward for the European Chemical Industry towards a more bio-based future. In order to derive a holistic roadmap that can lead the way, the analytical part of the project will consider feedstocks, technologies and markets as well as regulatory issues, societal needs, consumer questions and communication.

The consortium partners bring in complementary expertise in relevant fields of the bioeconomy and chemical industry, covering in depth all aspects that need to be included in the roadmap. All partners have been or are still actively involved in successfully completed and ongoing FP7, H2020, and BBI projects on different aspects of the bioeconomy, as well as in several groups and committees working on political or standardization aspects of bio-based products.

Contacts: Lea König: lea.koenig@dechema.de

Website

 POWER4BIO project

 POWER4BIO project

Project concluded

POWER4BIO project aims at empowering regional stakeholders to boost the transition towards bioeconomy regions in Europe by providing them with the necessary tools, instruments and guidance to develop and implement sound sustainable bioeconomy strategies. In particular, POWER4BIO will define a methodology based on a 3-steps approach (stakeholders engagement, regional analysis and strategy development) to guide European regions when preparing and reviewing their regional bioeconomy strategy and its associated implementation plan (roadmap), and which will be ultimately integrated in a Bioregional Strategy Accelerator Toolkit.

POWER4BIO will also develop a catalogue of bio-based business models, including best practice examples, to support regions understand, identify and select the most adequate bio-based solutions for developing their bioeconomy and; POWER4BIO will issue recommendations to use and align the main funding instruments and policies in Europe to support bioeconomy business models.

Moreover, POWER4BIO will rely on a comprehensive programme to foster mutual learning and intra- and interregional collaboration and networking among regional stakeholders to ensure knowledge transfer across sectors and regions and to jointly develop and complement different sustainable bioeconomy value chains within 10 participant regions member of the consortium (5 of which coming from Central and Eastern Europe) from 9 different countries.

Finally, POWER4BIO will design and deliver an ambitious training programme to increase the skills and capacity of the regional stakeholders in several important aspects of the bioeconomy (sustainability in the bio-based value chains, synergies in funding instruments, technology transfer and entrepreneurship, etc.). All in all, the potential brought in the project is huge, considering that the 10 participant regions represent a population of around 88 million people, a GDP of 2460 billion EUR and an area of almost 450,000 km2.

Contacts: Ignacio Martin: imartin@fcirce.es 
Christine Beusch: beusch@e-p-c.de

Website

 Lifecab project

 Lifecab project

Project concluded

Biowaste management has become a major issue because of the increasing amount of biowastes. These stem from increasing polulation urbanization and consumption habits. Current biowaste management practices are based on fermentation and incineration technologies. These practices produce biogas, compost, thermal and electrical energy. The processing costs exceed the sale value of the products and/or raise issues connected to their secondary environmental impact. Based on previous research work1 carried out by the University of Torino in cooperation with Acea Pinerolese Spa located in Pinerolo (TO), LIFECAB will demontrate in real operational a new process to treat municipal biowaste (MBW) and produce soluble biorganic substances (SBO). These substances will be used as additives for anaerobic fermentation reactors to improve the economy and environmental impact of the current fermentation technology.

The new process, developed at small laboratory pilot level (www.biochemenergy.it), is based on the chemical hydrolysis of fermented MBW in water. It yields all marketable products. It allows recycling all reagents and water. It produces no secondary waste and process effluents needing disposal. Moreover, the SBO have been shown multipurpose products for potential use in the chemical industry, agriculture and animal husbandry. These findings prospect that a MBW treatment plant may be turned into a biorefinery producing biofuel and value added biobased products. Most recent laboratory studies have proven that the addition of 0.05-2% SBO to the MBW organic humid fraction (OHF) fermentation slurry decrease the ammonia content of the digestate, while maintaining biogas production and quality. The effect is presumably due to the capacity of SBO to promote oxidation of ammonia to N2.

Based on the above premises, LIFECAB is a pilot/demonstated project aiming to validate at TRL 7 previous research. This will be achieved by pursuing three main objectives:

  1. validating the SBO production process in real operational conditions;
  2. validating the new SBO assisted anaerobic fermentation process;
  3. demonstrating a new business model, which allows the valorization of biowastes through integrated biochemical and chemical processes in real operational environment with reduced entrepreneurial risk.

Contacts: Enzo Montoneri: enzo.montoneri@gmail.com
Sorani Montenegro: sorani.montenegro@hysytech.com
Simone Solaro: simone.solaro@hysytech.com

Website

 ISABEL project

 ISABEL project

Project concluded

Objective

Community energy sits high in the energy policy agenda as an inseparable part of the strategy towards a low-carbon EU economy. Sustainable biogas technologies have been extremely slow in catching up with community energy developments, failing to benefit from their undeniable potential. ISABEL aims to remove the obstacles and to promote community biogas in the EU by bringing out its societal relevance and by joining forces with a major revolutionary movement – Social Innovation. To achieve and sustain this transition, ISABEL employs modern marketing research to understand the needs and cultural diversities of the communities, fuses Social Innovation to reposition Biogas from an economic bio-fuel carrier to a social good, to come up with new community concepts and to build a stronger and wider community engagement in support of biogas. We zoom in on specific areas with diverse interest and we support communities on the ground to realize community biogas plans in coordination with all the stakeholders, slashing transaction overheads. We bring communities together to exchange and inspire each other as we carefully steer them towards quality sustainability and impact assessment principles. We zoom out to inform the policy world about what works and what does not, what should change and how we can scale-up, replicate and innovate in order to make investments more attractive. We envision a more innovative, better connected, less sensitive to policy and more transparent community biogas movement which will serve as a spring of ideas for other renewable energy technologies.
But we start simple – we want more ideas, more and deeper public involvement, more responsible community biogas plans and more bold and fair policies; and we bring along a highly complementary team of practical minded people to do it.

Contacts: Iakovos Delioglanis: delioglanis@qplan.gr

Website

 GREENPROTEIN project

 GREENPROTEIN project

Project concluded

GreenProtein is an European project which aims at a major innovation in the fields of protein production and food loss reduction in the EU by producing high-added value, food-grade functional proteins and other ingredients, out of green field waste.

The general objective of the GreenProtein project, that gathers 7 different European partners during 4.5 years, is to establish a demo plant for the extraction and purification of functional RuBisCo protein isolate at industrial scale. GreenProtein will demonstrate the technical and economic feasibility of the revalorisation of green residues from existing agroindustry.

The demo plant is design so it is a replicable system with a high spreading projection in the whole EU.

Contacts: Africa Matilda Pardavila Morris: africa.pardavila@innovarum.es

Website

EMBRACED project

EMBRACED project

This project ends on: 31/05/2022

Objective

A sizeable category in terms of organic content within MSW is represented by Absorbent Hygiene Products (AHPs; e.g. nappies, adult incontinence products, feminine hygiene items, wipes, etc.) waste, which is currently considered as non-recyclable fraction of MSW and finds its way to landfills or incineration, leading to important environmental concerns. Indeed, each year 8,500,000 tons of such waste are incinerated or landfilled in Europe (the equivalent of almost 30 landfills every year), and over 30,000,000 tons in the world. AHP are mainly composed of a mix of natural fibres (cellulose) and polymers (PP/PE and superabsorbent polymer), valuable materials that currently don’t find a proper valorization. Within EMBRACED project, a first-of-its-kind multi-purpose integrated biorefinery will be established in order to valorize in a relevant environment scenario the cellulosic fractions obtained from AHP waste towards the production of bio-products of significant commercial interest, and – concurrently – high added-value co-products, such polyolefinic plastics and SAP (superabsorbent polymers).
This innovative biorefinery model will involve all the main actors of the whole value chain, from AHP consumers and local population to waste management and logistic companies, leading AHP producers and bioprocess developers, as well as final products developers. In a view of circular economy, all the fractions obtained from the processed AHP waste will be reused through valorization into final products, and in particular the high-quality cellulosic fraction of AHP (ca. 1,275,000 ton/y in Europe), which has significant advantages vs. traditional 2nd generation lignocellulosic feedstocks in terms of homogeneity and downstream bioprocessing costs, will be converted and valorized in two parallel value chains, leading to the production of biobased building blocks, polymers and fertilizers.

Contacts: Orsola Bolognani: embraced@fatergroup.com

Website