Category: New value chains and business models

SusFeed project

SusFeed project

This project ends on: 31/12/2025

Sustainable feed production from Norwegian bio-resources for livestock and aquaculture

In recent years, considerable attention has been given to identifying sustainable and cost-effective animal feed materials to address issues such as food security, GhG emissions, climate change, and, in Norway, ambitious targets to increase salmon production. This search for novel feed ingredients and sources is creating new opportunities for companies working with bioresources. One option is the use of new feed technologies that promise to enhance food security, lower GhG emissions, promote sustainability and create new industries for food production in Norway. This is likely to dramatically transform the existing feed system. While there has been a focus on developing new feeds, we have very limited knowledge on the overall feed system and how it is changing – knowledge that is critical for meeting the future needs of the agri- and aquaculture sectors.

How sustainable will the feed system be and how can we sustainably source feed in the volumes required? The aim of SusFeed is to develop an in-depth understanding of the feed system: how feed can be harvested, produced, processed and distributed to supply the growing and changing needs of Norway’s agri- and aquacultural sectors. For this, we will apply a systems approach to mapping the domestic feed system and, using a systems model, conduct environmental, social and economic sustainability assessments. SusFeeds multi-disciplinary team involves researchers from the social sciences, biology, agronomy, nutrition and technology, working closely with 18 business partners, stakeholders and other interest groups involved in the feed value chain. Our primary output will be a model of the Norwegian feed supply system that maps potential domestic feed ingredients, their potential for industrial up-scaling and sustainability. This will provide the basis for the establishment of a future feed supply system that operates across sectors and incorporates potentially disruptive technologies and innovation the coming decades.

Contact:

Egil Petter Stræte
email: egil.petter.strate@ruralis.no

website: https://ruralis.no/en/projects/susfeed-baerekraftig-norsk-forproduksjon/

 BL2F project

 BL2F project

Project concluded

Black Liquor to Fuel

Aviation and shipping sectors are two areas of transport that are expected to grow at an incredibly fast rate, and so will their greenhouse gas emissions.

To tackle this challenge the BL2F project (Black Liquor to Fuel) will create a new, clean fuel to be used as an alternative to current fossil fuels.

BL2F is a Horizon 2020 project that will take the waste-stream of the pulp-and-paper industry, called Black Liquor, and create an end-to-end chain to produce a biofuel ready to be used in plane and ship engines. The process begins at the pulp mill, where Black Liquor will be converted into a biofuel intermediate using a novel integrated Hydrothermal Liquefaction (IHTL) concept. The biofuel intermediate will then be refined and upgraded to produce aviation and marine fuel. All the production steps in BL2F, will be optimised to make the process economically and technically feasible.

Led by Tampere University, the consortium consists of a mix of 12 partners which all bring in different resources and expertise to help ensure the project’s success. Employing the BL2F process can reduce waste, cost, greenhouse gas emissions, and contribute to a circular economy. Large-scale use of the processes and fuel developed by the project can be an important asset in the fight against climate change

Contact:

Prof. of Practice Tero Joronen
email: hello@bl2f.eu

website: https://www.bl2f.eu/

 BIO-PLASTICS EUROPE project

 BIO-PLASTICS EUROPE project

Project concluded

Developing and Implementing Sustainability-Based Solutions for Bio-Based Plastic Production and Use to Preserve Land and Sea Environmental Quality in Europe

The project BIO-PLASTICS EUROPE addresses the topic „Sustainable solutions for bio-based plastics on land and sea“ (Topic identifier: CE-BG-06-2019), within the focus area „Connecting economic and environmental gains – the Circular Econonmy (CE)“ and will focus on sustainability strategies and solutions for bio-based products to support the Plastics Strategy. This shall include innovative product design and business models facilitating efficient reuse and recycling strategies and solutions, including ensuring the safety of recycled materials when used for toys or packaging food stuffs. In line with the EU strategy on international cooperation in research and innovation and in order to encourage the further replication, the European consortium is complemented by a partner in Malaysia, providing an added value and helping them to address the many problems they face.

Contact:

Dr. Jelena Barbir
email: Jelena.barbir@haw-hamburg.de

website: https://www.bioplasticseurope.eu/

OLEAF4VALUE project

OLEAF4VALUE project

This project ends on: 30/06/2024

Olive leaf multi-product cascade based biorefinery

From an under-used biomass in the primary sector to tailormade solutions for high added value international market applications. The goal of OLEAF4VALUE is to set up the basis of six smart value chains based on a newly developed 4.0 concept: Smart Dynamic Multi-Valorisation-Route Biorefinery (SAMBIO) for the cascade valorisation of the olive leaf biomass according to its initial composition (Biomass Suitability Index – BSI). OLEAF4VALUE will give a new life to olive leaves, solving the problem of its removal from the fields while obtaining high added value bioactive compounds with high-market potential.

Contact:

Andrea León
email: andrea.leon@innovarum.es

website: https://oleaf4value.eu/

INDEPENDENT project

INDEPENDENT project

This project ends on: 31/12/2027

INDEPENDENT Integrated Biorefinery Concept for Bioeconomy Driven Development

The interest in generating renewable fuels from algae, has gained attraction for quite long time and pursued by both public and private entities. Yet, the pressure of budget cuts, global economic crisis and fluctuating oil prices have pushed back the progress of algal research and development efforts. Meanwhile, Europe is moving towards a bioeconomy driven future along with renewable fuel standards and requirements triggered by algal research. This is no coincidence as algal biomass offers several advantages such as efficient photosynthesis and CO2 capture mechanisms, no direct competition with food crops, non-arable land requirements, recyclable nutrients and wastewater utilization. However, in order to achieve commercially applicable rates of return on algal biofuels, numerous economical feasibility models suggest there is a need to generate value-added products within an integrated biorefinery concept. This requires targeting not only algal lipids as biodiesel feedstock, but also other biomolecules having higher value per dry biomass weight with potential applications such as food additives, health supplements, and pharmaceuticals.

A growing interest in designing biorefineries using algae species to produce several bio-commodity products also includes means of exploring their favorable greenhouse gas, water and land-use sustainability metrics. In this respect, key inputs include utilizing recycled nitrogen and phosphorus resources, tapping into existing CO2 emissions, and uncompromised water supplies. In addition, options to exploit residual biomass for additional bioenergy and biofertilizer applications for soil amendments are also considered auspicious for a more competent biorefinery platform.

This project is designed to build on all of these well thought contemplations to construct an integrated algal biorefinery that produces a portfolio of products that can be adjusted to meet market demands as a gateway into large scale production. Project site is carefully selected on Boğaziçi University’s Saritepe Campus, located on the coast of Black Sea with readily access to seawater. Emboldening on the interdisciplinary nature of the team, a non-destructive breakwater system will be designed to generate a coastal site suitable for macroalgae cultivation at open sea. Microalgae cultivation will be supported by recycled nutrients and waste CO2. Novel marine macro- and microalgae species will be pursued for pharmaceutical, human food and animal feed applications in addition to traditional biofuel functions. Digested algal biomass will be made available to organic farming activities on campus. A wind turbine operated year round will supply renewable energy to all operations on site allowing carbon-negative production. In addition to a full scale environmental life cycle assessment (e-LCA), a social life cycle assessment (s-LCA) will be conducted to assess the social and sociological aspects of algal biorefinery and its products, their actual and potential positive as well as negative impacts on the communities involved.

This large scale study with more than 110 wet tons of algae production per harvest period will provide key scientific findings and novel engineering pipelines to manufacture high-throughput multi-products on an algal biorefinery platform. The end result is expected to be advanced knowledge and practice for economically feasible and environmentally sustainable algal biorefinery with improved production metrics. Project team is comprised experts from universities, research institutes, SMEs, and large enterprises.

Contact:

Asst. Prof. Dr. Berat Haznedaroglu

(Project Coordinator)

Bogazici University

email: berat.haznedaroglu@boun.edu.tr

website: https://independent.boun.edu.tr/en/

 BIOSCHAMP project

 BIOSCHAMP project

Project concluded

BIOSCHAMP Biostimulant alternative casing for a sustainable and profitable mushroom industry

The BIOSCHAMP project aims to develop an integrated approach to tackle the mushroom cultivation challenges: an alternative and sustainable peat-free biostimulant casing for the mushroom industry, reducing the dependency on and need for pesticides and contributing to improve the productivity, the sustainability, and the profitability of the European mushroom sector.

The goal of the BIOSCHAMP project is to improve the mushroom sector industrial profitability while reducing the agronomical need for pesticides by 90 %. This will help mushroom growers meet consumer demands to find alternatives to fungicide dependence.

Contact:

Jaime Carrasco

email: j.carrasco@ctich.com

website: https://bioschamp.eu/

 COOPID project

 COOPID project

Project concluded

COOPeration of bioeconomy clusters for bio-based knowledge transfer via Innovative Dissemination techniques in the primary production sector

Bioeconomy starts on the fields, yet meaningful participation of the primary sector in the bioeconomy is currently challenged, especially due to:

  1. poor cooperation and knowledge transfer between relevant stakeholders,
  2. limited support to invest in R&D of new value chains.

To answer this challenge, the COOPID project proposes an effective strategy to mobilise primary producers and stimulate the uptake of inclusive and sustainable bio-based business models in the European primary production sector, considering regional & sectorial conditions.
To do so, a network of COOPID Bioeconomy Clusters from 10 European countries has been created ad-hoc, involving a range of stakeholders: (a) primary producers, in cooperatives or associations, within agriculture, forestry & aquaculture, (b) industry, (c) public sector, (d) research & academia.
We will foster the deployment of innovative bio-based business models in the primary production based on a four-level knowledge transfer approach:

  • Selecting “Success Story Showcases” across different EU countries among the network which will be visited in person by the participants from the network – “COOPID ambassadors”- (level 1),
  • Organising workshops to be done by the “COOPID ambassadors” for sharing main highlights of their visit to the “success story” among their peer primary producers (level 2),
  • Carrying out interactive dissemination & communication engaging other target audiences (levels 3&4).

Focus will be put on mobilisation of female and young producers as having a great potential to innovate yet being underrepresented in the primary production sector.
Recommendations for primary producers, policy-makers and academia & research will be elaborated, fostering better understanding of different perspectives on bioeconomy, having a significant impact on a wide bioeconomy deployment in primary production, reaching a broad audience (estimated at 9,500 stakeholders).

Contact:

Juan Sagarna

email: sagarna@agro-alimentarias.coop

website: https://coopid.eu/

 BRANCHES project

 BRANCHES project

Project concluded

BOOSTING RURAL BIOECONOMY NETWORKS FOLLOWING MULTI-ACTOR APPROACHES

BRANCHES aims to implement the implementation of new cost-effective technologies; mobilize more biomass and create innovative business opportunities in rural areas by improving and strengthening the links between bioeconomy practice and science. The project will ensure communication through the two-way flow of information for the transfer of ideas and technologies between scientists and professionals from agriculture and forestry in rural areas. The valuable knowledge produced by research and development should always be shared far beyond the scientific community.

BRANCHES will integrate selected knowledge on forest and agricultural biomass supply chains with available innovative technologies and best practice cases for bioeconomy solutions with bioenergy conversion systems in a wider bioeconomy context. In all EU countries, existing strategies and best available technologies will be presented in easily understandable formats through the national thematic networks launched by BRANCHES. The results of cooperation between national thematic networks are expected to have a widespread impact on professionals in European rural settings.

BRANCHES will
  • summarize, share and deliver existing best practices and research findings;
  • increase the implementation of new cost-effective technologies;
  • mobilize more biomass and generate new business opportunities in rural areas by improving and strengthening the link between practice and science of the bio-based economy;
  • trigger information flows on new opportunities and technologies for farmers and forestry operators;
  • highlighting the entrepreneurial needs and elements relevant to professionals by gathering experiences from research and development and collecting practices implemented by professionals;
  • Promote the bioeconomy and rural development through new bio-based initiatives through networking and participatory research methods to showcase best practices and cost-effective technological solutions.
Key tools
  • Selected knowledge on forest and agricultural biomass supply chains will be integrated with good practice cases and new technologies available for bioenergy conversion in a broader bioeconomy context;
  • The requests and needs of professionals will be collected through a series of workshops and meetings;
  • In all EU countries, existing strategies and best available technologies will be summarized and shared across five project countries (Finland, Germany, Italy, Poland, Spain).
  • Thematic networks will be launched by BRANCHES and 5 other collaborative networks established in Portugal, Lithuania, Latvia, Czech Republic, Slovakia.

Contact:
Sofia Manelli
email: presidente@chimicaverde.it
website: https://www.branchesproject.eu/

 SMARTBOX project

 SMARTBOX project

Project concluded

Selective Modifications of ARomatics through Biocatalytic Oxidations

Relying on the advanced engineering platform, SMARTBOX will develop the one-enzyme conversion of HMF into FDCA and intermediates, and the one-enzyme conversion of lignin monomers into a potential biobased building block for polycarbonates and vanillin. By adopting a 1-enzyme FDCA production process, the associated production costs and carbon footprint are expected to decrease significantly compared to SOTA chemical oxidation methods. The unique feature of SMARTBOX is that reductive catalytic fractionation (RCF) will be used to selectively produce specific lignin monomers from biomass in near theoretical yields. The structural similarity of the resulting monomers with the SMARTBOX building blocks allows the development of high-yielding processes with only one enzyme. Due to the smart combination between oxidative biocatalysis and RCF, the production of added-value bio-aromatics will proceed with higher yields than the state of the art.

Contacts:

Tanja Meyer
SMARTBOX Coordinator
Bio Base Europe Pilot Plant
tanja.meyer@bbeu.org

Website

Founding source: BBIJU Research & Innovation Action

Talent4BBI project

Talent4BBI project

This project ends on: 31/08/2026

Talent4BBI, the first industry led PhD MSCA programme is being led by BiOrbic, the Bioeconomy SFI Research Centre located in University College Dublin (UCD). Talent4BBI brings together 10 industry and 7 academic partners across 8 Member States and 1 Associated Country with the aim of training a cohort of 11 highly skilled industry-ready ESRs equipped to lead the future of the European bio-based industry sector. The programme provides a unique opportunity for Early-Stage Researchers (ESRs) to develop key skills, competencies and experience required by the bio-based industries through a targeted programme for future bioeconomy leaders. During the 60-month programme duration, the 11 ESRs will undertake PhDs of 48 months cohosted by industry and academia. The ESRs will be recruited and co-hosted by a consortium of 16 partners across 8 Member States and 1 Associated Country (7 universities and 9 leading bio-based industries) with a wealth of collective experience in training talented mobile researchers. 3 additional industry partners will also contribute their expertise to the PhD training programme.

The programme structure offers a unique opportunity for graduates to thrive in an industrial and academic research setting and enhance the ESR career opportunities in line with the MSCA COFUND work programme objectives.

Talent4BBI’s selection process will be guided by principles of openness, transparency, merit, impartiality, and equality for the ESRs. Talent4BBI will impact the European Research Area through developing a uniquely qualified and career-driven talent pool, driving effective cooperation between industry and academia, and boosting the development of bio-based industries.

Contacts:

Prof. Kevin O’Connor – Programme coordinator
Cathy Quinn – Programme manager

email: Talent4bbi@biorbic.com

Founding source: Talent4BBI project is cofounded by H2020-EU.1.3.4., H2020-EU.1.3.

Website